考研英語閱讀篇章太陽能電池板可將二氧化碳轉(zhuǎn)化為甲酸

雕龍文庫 分享 時間: 收藏本文

考研英語閱讀篇章太陽能電池板可將二氧化碳轉(zhuǎn)化為甲酸

  篇章:太陽能電池板可將二氧化碳轉(zhuǎn)化為甲酸

  Research to curb global warming caused by rising levels of atmospheric greenhouse gases, such as carbon dioxide, usually involves three areas: Developing alternative energy sources, capturing and storing greenhouse gases, and repurposing excess greenhouse gases. Drawing on two of these approaches, researchers in the laboratory of Andrew Bocarsly, a Princeton professor of chemistry, collaborated with start-up company Liquid Light Inc. of Monmouth Junction, N.J. to devise an efficient method for harnessing sunlight to convert carbon dioxide into a potential alternative fuel known as formic acid. The study was published June 13 in the Journal of CO2 Utilization. The transformation from carbon dioxide and water to formic acid was powered by a commercial solar panel generously provided by the energy company PSE G that can be found atop electric poles across the state. The process takes place inside an electrochemical cell, which consists of metal plates the size of rectangular lunch-boxes that enclose liquid-carrying channels.

  To maximize the efficiency of the system, the amount of power produced by the solar panel must match the amount of power the electrochemical cell can handle, said Bocarsly. This optimization process is called impedance matching. By stacking three electrochemical cells together, the research team was able to reach almost 2 percent energy efficiency, which is twice the efficiency of natural photosynthesis. It is also the best energy efficiency reported to date using a human-made device.

  A number of energy companies are interested in storing solar energy as formic acid in fuel cells. Additionally, formate salt -- readily made from formic acid -- is the preferred de-icing agent on airplane runways because it is less corrosive to planes and safer for the environment than chloride salts. With increased availability, formate salts could supplant more harmful salts in widespread use.

  Using waste carbon dioxide and easily obtained machined parts, this approach offers a promising route to a renewable fuel, Bocarsly said.

  

  篇章:太陽能電池板可將二氧化碳轉(zhuǎn)化為甲酸

  Research to curb global warming caused by rising levels of atmospheric greenhouse gases, such as carbon dioxide, usually involves three areas: Developing alternative energy sources, capturing and storing greenhouse gases, and repurposing excess greenhouse gases. Drawing on two of these approaches, researchers in the laboratory of Andrew Bocarsly, a Princeton professor of chemistry, collaborated with start-up company Liquid Light Inc. of Monmouth Junction, N.J. to devise an efficient method for harnessing sunlight to convert carbon dioxide into a potential alternative fuel known as formic acid. The study was published June 13 in the Journal of CO2 Utilization. The transformation from carbon dioxide and water to formic acid was powered by a commercial solar panel generously provided by the energy company PSE G that can be found atop electric poles across the state. The process takes place inside an electrochemical cell, which consists of metal plates the size of rectangular lunch-boxes that enclose liquid-carrying channels.

  To maximize the efficiency of the system, the amount of power produced by the solar panel must match the amount of power the electrochemical cell can handle, said Bocarsly. This optimization process is called impedance matching. By stacking three electrochemical cells together, the research team was able to reach almost 2 percent energy efficiency, which is twice the efficiency of natural photosynthesis. It is also the best energy efficiency reported to date using a human-made device.

  A number of energy companies are interested in storing solar energy as formic acid in fuel cells. Additionally, formate salt -- readily made from formic acid -- is the preferred de-icing agent on airplane runways because it is less corrosive to planes and safer for the environment than chloride salts. With increased availability, formate salts could supplant more harmful salts in widespread use.

  Using waste carbon dioxide and easily obtained machined parts, this approach offers a promising route to a renewable fuel, Bocarsly said.

  

信息流廣告 競價托管 招生通 周易 易經(jīng) 代理招生 二手車 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買車咨詢 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書推薦 工作計劃 游戲攻略 心理測試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營銷 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢 游戲攻略 興趣愛好 網(wǎng)絡(luò)知識 品牌營銷 商標交易 游戲攻略 短視頻代運營 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計 職業(yè)培訓(xùn) 免費發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 語料庫 范文網(wǎng) 工作總結(jié) 二手車估價 情侶網(wǎng)名 愛采購代運營 情感文案 古詩詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點痣 微信運營 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機派 企業(yè)服務(wù) 法律咨詢 chatGPT國內(nèi)版 chatGPT官網(wǎng) 勵志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運營 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機 高度酒 沐盛有禮 公司注冊 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒
主站蜘蛛池模板: 久久国产视频精品| 亚洲人成人77777在线播放| 91精品免费在线观看| 成人免费在线观看| 亚洲欧美日韩成人网| zoom和okzoom在线视频| 亚洲第一精品福利| 国产午夜视频在线观看| 少妇高潮太爽了在线观看| 欧美最猛黑人xxxx黑人| 韩日一区二区三区| chinesestockings国产| 九九视频九九热| 免费在线观看理论片| 国产最新精品视频| 国产综合久久久久久鬼色| 亚洲欧洲日产国码无码久久99 | 欧美黑人巨大xxxxx视频| 国产啪精品视频网站免费尤物| xxxxx做受大片在线观看免费| 校花小冉黑人系列小说| 午夜电影在线观看国产1区| 男女一进一出抽搐免费视频| 成人免费小视频| 亚洲ⅴ国产v天堂a无码二区| 精品人妻人人做人人爽夜夜爽| 国产真实乱对白精彩久久| 一个人看的视频在线| 日韩欧美一区二区三区免费观看| 免费久久人人爽人人爽av| 高清一级做a爱过程免费视频| 夜色私人影院永久入口| 久久久精品一区二区三区| 欧美老熟妇欲乱高清视频| 可以直接看的毛片| 麻豆麻豆必出精品入口| 天堂mv免费mv在线mv观看| 中韩高清无专码区2021曰| 欧美另类第一页| 伊人色院成人蜜桃视频| 色欲欲WWW成人网站|